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 The timbre of violins is identified using machine learning, and a computer program is developed for the 
neural network using Python and Keras libraries. The 21 violins recorded include old Italian violins made 
by Stradivari and contemporary violins. The training and test data use the spectrum envelope and Mel-
frequency cepstrum coefficients (MFCC). The accuracy of the identification test in the case of open strings 
is greater than 90 %. Furthermore, experiments that predict similarity in timbre of an unknown violin to that 
of trained violins are presented.
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1. INTRODUCTION 
Some professional violinists and dealers can distinguish differences in the timbre of violins, such as 

differences in the country of the product and differences in violin makers. However, the ability to distinguish the 

timbre of a violin is sensitive and intuitive; it is limited to professionals who have the opportunity to observe 

many antique violins, such as Stradivari and Guarneri del Gesu. Thus, non-professionals have difficulty in 

distinguishing differences in the characteristics of antique violins. 

Several studies have analyzed the timbre of violins. Using spectrum analysis, Buen analyzed the difference 

in the acoustic features of 30 violins, including Stradivari and Guarneri del Gesu.1,2 Old and modern violins have 

been compared by a collaboration between the university and the violin museum in Cremona.3 Similarly, in 

Taiwan, Tai and Chung4 studied the formant analyses of Stradivari and Amati using the cepstrum (LPC method, 

linear prediction coding method), with collaboration with the Chi Mei Museum. Nagyvary compared the sound 

of Guarneri del Gesu and vowel sounds by formant analysis.5 For a musical instrument with a resonance body, 

the acoustic features can be analyzed by observing the spectral envelope and formant.6 

This study attempts to determine whether a computer can identify differences in the timbre of violins like 

violinists and dealers can. In recent years, machine learning techniques, such as deep learning, have been rapidly 

developed. By learning considerable sound data, the identification of a timbre is possible using machine learning 

techniques. Moreover, an antique violin can be appraised and a more realistic sound can be synthesized using 

generative models of deep learning. For example, the sound quality of electric instruments, such as an electric 

violin, digital piano, and MIDI sound, is expected to improve and be more realistic. In this study, we recorded 

21 violins, from old Italian violins made by Stradivari to contemporary violins. Additionally, we calculated the 

spectrum envelope and Mel-frequency cepstrum coefficients (MFCC) for the training and test data. Subsequently, 

we evaluated whether artificial intelligence can distinguish the timbre of different violins (e.g., Stradivari’s 

versus other violins) and identify the violin maker. 

  

2. RECORDING AND MACHINE LEARNING 

RECORDING OF VIOLIN SOUND 

The violin sounds listed in Table 1 were recorded. The violins used for recording were selected from the old 

Italian violins of the 17th century to the Japanese bland-new commercial violins. We recorded the sound that a 

violinist played on the open strings without any expression (E5, A4, D4, G3, long-tone of approximately 4 s) 

and the musical piece “Meditation from Thaïs” with musical expression (including vibrato, dynamics, 

diminuendo, and crescendo). This musical piece was in a slow tempo with several long notes. Moreover, the 

pitch varied over a wide range, from A3 (220 Hz) to F#6 (1480 Hz), which is advantageous for learning various 

sound data. The violinist played the open strings and musical pieces twice for each violin. 

As for the recording conditions, FFT analyzer (Oros NV Gate OR30 series) and the ICP 1/4-inch microphone 

was used for recording. The microphone was set at approximately 10 cm above the violin bridge. The 

microphone's frequency response was 20–20 kHz, the dynamic range was 30–143 dB, and the sampling 

frequency was 51.2 k/s. The sound wave was saved as a wav 16-bit PCM format. The sounds of the violins were 

recorded in a small rehearsal room in a violin shop. The reverberations and echoes in the room were very small. 

  

Table 1. Violins for recording and training data 

Violin maker (country) Year 

Catenali (Italy) 1690 ca 

A.Stradivari (Italy) 1698 

Pietro Guarneri (Italy) 1700 ca 

Santo Serafin (Italy) 1700 ca 

Gragnani (Italy) 1760 

Balestrieri (Italy) 1780 



 

 

Pressenda (Italy) 1838 

Fabris (Italy) 1870 

Scarampella (Italy) 1907 

Fagnola (Italy) 1923 

Genovese (Italy) 1927 

Michetti (Italy) 1929 

Guerra (Italy) 1941 

Bisiacchi (Italy) 1953 

Garinberti (Italy) 1967 

Contemporary violin middle-class A (Japan) 2015 

Contemporary violin middle-class B (Japan) 2015 

Contemporary violin Economic A (Japan) 2015 

Contemporary violin Economic A (Japan) 2015 

Contemporary violin Stradivari Copy (Japan) 2015 

Contemporary violin Guarneri Del Gesu Copy (Japan) 2015 

 

PROGRAM FOR MACHINE LEARNING 

Figure 1 illustrates the methodology used in this study. The acoustic features, spectrum envelope, and MFCC 

of the recorded sound data were calculated using a computer program. Supervised neural network training was 

performed using a pair of acoustic features and violin makers; herein, the input was the acoustic features, and 

the output was the violin maker. Finally, the trained network was run on the test data to validate the accuracy 

and calculate the similarity for each violin. 

 

Figure 1. Schematic overview of the procedure 

The program to calculate the acoustic features and execute machine learning was written using Python and 

the Keras library, which is the front end of TensorFlow. The program consists of numerous functions: division 

of sound waves, calculation of the spectrum envelope and MFCC, and execution of machine learning and 

evaluation. The sound wave where the sound of a violin is recorded was cut into 0.06 s segments; subsequently, 

this short sound wave data was multiplied with a window function, the Hanning window.  

The program calculates the spectrum envelope using the cepstrum analysis method7 and saves the spectrum 

envelope with the label that identifies the violin in a CSV file. Herein, the power spectrum was calculated using 

a digital Fourier transfer (DFT). Furthermore, the logarithmic spectrum provided by the logarithmic conversion 

was performed with inverse DFT, and the axis returned to the time domain, after which the cepstrum was 

obtained. After the low-level part of the cepstrum was filtered (liftering) and DFT was performed, the axis was 

shifted to the frequency domain again, and the spectrum envelope was obtained. 

If the cepstral coefficient is larger, the shape of the spectrum envelope becomes more complex. In this study, 

the sampling number of the DFT was set to 1024 points, and the cepstrum coefficients were set to 20–80. The 

spectrum envelope data were divided into two subsets for the training and testing of the neural network. The 

Neural Network 

Input: Acoustic Features 

Sound wave 

Output: Violin Maker 

Features Extraction 



 

 

training dataset was selected randomly from the entire dataset of all violins. The percentage of testing data set 

against the entire dataset was 5 %, and the remaining 95 % of the entire dataset was used for the training data 

set. The label for identification was assigned to each of the 21 violins and four strings; thus, 84 labels were 

assigned to distinguish the timbre. The neural network was a fully connected four-layer network. The number of 

inputs was 1024, and the outputs of the 2nd and 3rd layers were 512. The number of outputs in the 4th layer was 

the same as the number of labels. The activation function was a ReLU function. The learning rate was 0.1, and 

the dropout ratio was 0.2. 

3. VALIDATION 
 

A. IDENTIFICATION OF TIMBRE 

The result of the experiment identifying the violin using the neural network trained with only open-string 

data is depicted as the blue line in Fig. 2. This result depicts the accuracy with which the program correctly 

identifies the violin and its string, where C is the cepstral coefficient. The number of training data was 

approximately 14000, and the number of evaluation data was approximately 700. Evidently, accuracy of more 

than 95 % was obtained in the case where C was 60 and 80. The reason for the good accuracy was attributed to 

the fact that the sound wave of the open string was approximately periodic. 

 

 

Figure 2. Accuracy of identification of violin (average). In the case of open strings, the accuracy is more than 95 %. 

But, in the case of a music piece, it is approximately 50 % 

 

The spectrum envelopes of strings E and G at different C values are shown in Fig. 3. Evidently, the spectrum 

envelope traced the peaks of the spectrum when C was low (Figs. 3 (a) and (c)). However, the spectrum envelope 

became wavy when C was high, as shown in Fig.3 (b) and (d). In particular, in Fig. 3 (b), the peaks of the 

spectrum envelope were almost identical to those of the spectrum. Thus, when the pitch of the sound of the 

evaluation data is high, an appropriate envelope curve is not obtained, and the accuracy is reduced. To solve this 

problem, further investigation and tuning of C are required.  
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Figure 3. Spectrum envelopes with different Cepstrum coefficients, C (open E and G string, Violin: Stradivari 

1698). 

Next, identification using the dataset of the music piece was performed. Approximately 40 s of sound were 

used for the datasets from the beginning of the music theme. The number of training data was approximately 

70000, and the number of evaluation data was approximately 3500. The accuracy is depicted as an orange line 

in Fig. 2. Because of the changes in pitch, dynamics, vibrato, and other musical expressions in the performance 

of the musical piece, the spectrum envelope changed much more variously than that of the open strings. C was 

set at 60, where the envelope was moderately generated. The accuracy of violin identification was approximately 

50–60 %. The accuracy of the music piece was lower than that of the open strings because of the sound wave’s 

non-constancy. 

Figure 4 shows a comparison of recognition accuracy depending on the nature of the sound. The accuracy 

was high when the neural network was trained and tested using open-string data only. The accuracy was 

approximately 90 %. This is because the sound wave of the open string was approximately periodic. However, 

when the training data was the music piece with expression, the accuracy became low (middle of the graph in 

Fig. 4, without string distinction) because the music piece contains a complex set of parameters, including vibrato 

and dynamic changes. In addition, in the case of the music piece, when the violins and strings (E, A, D, and G 

strings) were identified by calculating F0, the pitch range was recognized, and different labels were assigned to 

the training data for each combination of violin and string, the accuracy increased slightly (right side of the graph 

in Fig. 4). Thus, the accuracy depends on the pitch and selection of cepstrum ecoefficiency. 

 

(d) C = 80, G string (c) C = 20, G string 

(a) C = 20, E string (b) C = 80, E string 



 

 

 

Figure 4. Accuracy based on the nature of sound 

Figure 5 compares accuracies in acoustic features (spectrum envelope, Mel-spectrum, and MFCC). This 

result shows that MFCC is the best for identifying violin sounds. 

 

Figure 5. Comparison in difference with acoustic features 

 

B. APPLICATION TO QUANTIFICATION OF TIMBRE SIMILARITY 

Using the identification system of the neural network, an application for quantitatively predicting the 

similarity of timbre between two violins is discussed in this section.  

When purchasing a violin, the question often asked is,  “Which violin sounds similar to the Stradivarius the 

most?” In this situation, having a tool that can calculate and visualize the similarity in timbre among violins 

quantitatively using AI may be helpful and convenient. Therefore, we tested whether our system can quantify 

the timbre and predict the similarity between an unknown violin (you want to buy) and a famous violin. 
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Figure 6. Percentages of the timbre similarity of test violins against eight violins (famous violins, such as Stradivari 

and Fagnola), Dataset: Performance of a music piece, MFCC. Sant Seraphin is similar to Stradivari at 

approximately 42 %, and Michetti is similar to Stradivari at approximately 54 %. In contrast, the timbre of bland-

new violins resembles each other, similar to Garinberti, Bisiacchi, and Bland-new economic B 

 

 The probabilities which our neural network predicted are shown in Fig. 6. The eight violins (legend under 

the graph) selected from Table 1, including Stradivari and Fagnola, and their MFCC, were used to train the 

neural network. The other violins in the vertical axis are violins, assumed as unknown violins, to predict the 

similarity.  

For example, our program predicted that Michetti is similar to the Stradivari by 54 %, and Sant Seraphin is 

similar to Stradivari by 42 %. In contrast, the timbre of the bland-new violins made in Japanese factories 

resemble each other and are similar to the timbre of modern violins, such as Bisiacchi, Garinberti, and bland-

new violin B (made by the same violin factory). 

However, we used one violin for each violin maker in this experiment; hence, we cannot conclude 

definitively that the trained model of the network can express the general characteristics of a violin maker’s 

timbre. More recording data per violin maker is required for correct appraisal. 

 

4. CONCLUSION 
Experiments to identify the timbre of violins using a neural network were performed using the sound data 

from 21 violins. The possibility of quantifying the similarity of violin timbre and identifying the violin maker 

using a neural network trained by acoustic features, such as the spectrum envelope and MFCC, was demonstrated. 

In future, we may be able to develop an appraisal machine to authenticate Stradivari’s violin and synthesize 

more realistic sounds for electric instruments, such as the sound of a digital piano and MIDI sounds.  
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